4.7 Review

Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean

Journal

BIOGEOSCIENCES
Volume 18, Issue 4, Pages 1269-1289

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-18-1269-2021

Keywords

-

Funding

  1. French National Research Agency [18-CEO1-0011-01]
  2. Spanish Ministry of Science, Innovation and Universities [PID2019-108627RB-I00]

Ask authors/readers for more resources

The element silicon is crucial for the growth of silicified organisms in marine ecosystems, connecting biogeochemical cycles of various elements. Recent studies have shown that the total silicon inputs and outputs in the ocean are significantly higher than previously estimated, leading to important modifications and updates in understanding the global silicon cycle.
The element silicon (Si) is required for the growth of silicified organisms in marine environments, such as diatoms. These organisms consume vast amounts of Si together with N, P, and C, connecting the biogeochemical cycles of these elements. Thus, understanding the Si cycle in the ocean is critical for understanding wider issues such as carbon sequestration by the ocean's biological pump. In this review, we show that recent advances in process studies indicate that total Si inputs and outputs, to and from the world ocean, are 57% and 37% higher, respectively, than previous estimates. We also update the total ocean silicic acid inventory value, which is about 24% higher than previously estimated. These changes are significant, modifying factors such as the geochemical residence time of Si, which is now about 8000 years, 2 times faster than previously assumed. In addition, we present an updated value of the global annual pelagic biogenic silica production (255 Tmol Si yr(-1)) based on new data from 49 field studies and 18 model outputs, and we provide a first estimate of the global annual benthic biogenic silica production due to sponges (6 Tmol Si yr(-1)). Given these important modifications, we hypothesize that the modern ocean Si cycle is at approximately steady state with inputs = 14.8(+/- 2.6) Tmol Si yr(-1) and outputs = 15.6(+/- 2.4) Tmol Si yr(-1). Potential impacts of global change on the marine Si cycle are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available