4.7 Article

Investigation of an alternative cell disruption approach for improving hydrothermal liquefaction of microalgae

Journal

FUEL
Volume 197, Issue -, Pages 138-144

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2017.02.022

Keywords

Microalgae; Low temperature NaOH/urea solvent pre-treatment; Hydrothermal liquefaction; Bio-crude oil

Funding

  1. BioFuelNet Canada, a Network of Centres of Excellence
  2. NSERC

Ask authors/readers for more resources

High-energy and cost-intensive cell disruption processes represent one of the major techno-economic bottlenecks in the microalgae-based bio-refineries. Therefore, a feasible disruption method is required to ensure low energy input and operating cost, as well as high target-product (e.g., lipid) recovery. In this study, several different pre-treatment strategies for the disruption of Chlorella vulgaris were investigated, including NaOH/urea, sulfuric acid and ultra-sonication. Experimental results showed that the pretreatment by NaOH/urea solution resulted in an average mass loss of 33.7 wt.%, and resulted in the removal of 77.2% of carbohydrates and 46.3% of protein (as N) from the original biomass. While these results were comparable to those obtained from the other cell disruption methods, the NaOH/urea method is believed to be more advantageous in terms of energy-efficiency and cost. Afterwards, all pre-treated microalgae samples were subjected to the liquefaction process towards bio-crude oil production. The bio-crude oils obtained from NaOH/urea solvent pre-treated microalgae resulted in higher yields and demonstrated better flow properties. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available