4.7 Article

Growth of macroporous TiO2 on B-doped g-C3N4 nanosheets: a Z-scheme photocatalyst for H2O2 production and phenol oxidation under visible light

Journal

INORGANIC CHEMISTRY FRONTIERS
Volume 8, Issue 6, Pages 1489-1499

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0qi01327g

Keywords

-

Ask authors/readers for more resources

The research successfully fabricated a series of hierarchical macroporous mixed-phase TiO2 materials and tested their photocatalytic performance under visible light, revealing that TBCN-8 exhibited the best catalytic performance. Analysis showed that TBCN-8 had higher photocurrent, lower impedance arc, and lower photoluminescence intensity, indicating a lower electron-hole recombination rate, elucidating its superior catalytic performance.
The design and development of a highly robust catalyst for energy production and environmental abetment are gaining much attention in the field of visible-light-driven catalysis. This work demonstrates the fabrication of a series of hierarchical macroporous mixed-phase TiO2 on the surface of B-doped g-C3N4 (BCN). The physicochemical properties such as crystallinity, morphology, chemical environment, and optical and electronic properties of the as-synthesized materials were analysed by using different analytical techniques. PXRD and HRTEM data revealed the growth of mixed-phase TiO2 (anatase and rutile) on the BCN surface, mimicking P25 in the case of the best photocatalyst (TBCN-8). The catalytic activity of the as-synthesized materials was tested towards H2O2 production (110 mu mol h(-1)) and phenol oxidation (87% of 20 ppm phenol solution) under visible light. Higher photocurrent, lower impedance arc, and lower PL intensity suggest a lower electron-hole recombination rate in the case of TBCN-8, elucidating the best catalytic performance by the material. This work validates the facile fabrication of macroporous TiO2/BCN nanocomposites and their visible-light-driven catalytic activity based on both the p-n heterojunction and Z-scheme mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available