4.8 Article

Ancient plant DNA reveals High Arctic greening during the Last Interglacial

Publisher

NATL ACAD SCIENCES

Keywords

paleoecology; Arctic greening; sedimentary ancient DNA; Last Interglacial

Funding

  1. US NSF (Office of Polar Programs Awards) [1737712, 1737716, 1737750]
  2. US NSF (NSF Graduate Research Fellowship Program Award) [1144083]
  3. US NSF (NSF Doctoral Dissertation Research Improvement Award) [1657743]
  4. National Geographic Society
  5. CU Center for the Study of Origins
  6. CU Graduate School
  7. Geological Society of America
  8. Directorate For Geosciences
  9. Office of Polar Programs (OPP) [1737750, 1737716, 1737712] Funding Source: National Science Foundation
  10. Division Of Behavioral and Cognitive Sci
  11. Direct For Social, Behav & Economic Scie [1657743] Funding Source: National Science Foundation

Ask authors/readers for more resources

The study shows that vegetation changes during the Last Interglacial period in the Arctic had a positive feedback on climate warming, but the lack of high-latitude records limits the complete understanding of vegetation distribution during that time.
Summer warming is driving a greening trend across the Arctic, with the potential for large-scale amplification of climate change due to vegetation-related feedbacks [Pearson et al., Nat. Clim. Chang. (3), 673-677 (2013)]. Because observational records are sparse and temporally limited, past episodes of Arctic warming can help elucidate the magnitude of vegetation response to temperature change. The Last Interglacial ([LIG], 129,000 to 116,000 y ago) was the most recent episode of Arctic warming on par with predicted 21st century temperature change [Otto-Bliesner et al., Philos. Trans. A Math. Phys. Eng. Sci. (371), 20130097 (2013) and Post et al., Sci. Adv. (5), eaaw9883 (2019)]. However, high-latitude terrestrial records from this period are rare, so LIG vegetation distributions are incompletely known. Pollen-based vegetation reconstructions can be biased by long-distance pollen transport, further obscuring the paleoenvironmental record. Here, we present a LIG vegetation record based on ancient DNA in lake sediment and compare it with fossil pollen. Comprehensive plant community reconstructions through the last and current interglacial (the Holocene) on Baffin Island, Arctic Canada, reveal coherent climate-driven community shifts across both interglacials. Peak LIG warmth featured a similar to 400-km northward range shift of dwarf birch, a key woody shrub that is again expanding northward. Greening of the High Arctic-documented here by multiple proxies-likely represented a strong positive feedback on high-latitude LIG warming. Authenticated ancient DNA from this lake sediment also extends the useful preservation window for the technique and highlights the utility of combining traditional and molecular approaches for gleaning paleoenvironmental insights to better anticipate a warmer future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available