4.7 Article

Robust Hilly Polyamide Membrane for Fast Desalination

Journal

ACS APPLIED POLYMER MATERIALS
Volume 3, Issue 2, Pages 1070-1077

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsapm.0c01230

Keywords

desalination; reverse osmosis; metal-organic frameworks; membranes; cellulose nanofiber

Funding

  1. Australian Research Council through a Linkage Project [LP160101228]
  2. China Scholarships Council (CSC)
  3. Australian Research Council Australian Laureate Fellowship - Australian Government [FL200100049]
  4. Australian Research Council [LP160101228, FL200100049] Funding Source: Australian Research Council

Ask authors/readers for more resources

A highly porous thin-film composite (TFC) polyamide (PA) membrane was developed by integrating water-stable, highly crystalline submicrometer-sized MOF crystals with CNFs, showing excellent water permeance and NaCl rejection, demonstrating great potential for enhanced flux and mechanical stability in polyamide desalination membranes.
Tailoring the microstructure of a selective layer is a highly attractive way to improve the water flux of a reverse osmosis (RO) membrane by forming a crumpled surface without altering its chemical structure required for high salt rejection. However, it is challenging to maintain its structural integrity and stability and high flux at high pressure during desalination. Herein, a robust hilly thin-film composite (TFC) polyamide (PA) membrane is developed based on composite substrates made of cellulose nanofibers (CNFs) and metal-organic frameworks (MOFs). Water-stable, highly crystalline, submicrometer-sized MOF crystals, NH2-MIL-53(Al), are integrated with CNFs to form a robust and highly porous intermediate layer for the formation of a hilly PA layer. The resulting TFC RO membrane exhibits an excellent water permeance of 5.55 LMH/bar and a NaCl rejection of similar to 94.8%. The strategy reported here has great potential for the fabrication of polyamide desalination membranes with enhanced flux and mechanical stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available