3.9 Article

Collocation based training of neural ordinary differential equations

Journal

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/sagmb-2020-0025

Keywords

collocation; dynamical systems; neural ODE; systems biology

Ask authors/readers for more resources

This work focuses on neural ordinary differential equations as a hybrid model that integrates data-driven and dynamical systems approaches. The study proposes a collocation scheme as an efficient training strategy for training neural ODEs, illustrating its advantages and robustness in analyzing complex dynamical systems encountered in systems biology.
The predictive power of machine learning models often exceeds that of mechanistic modeling approaches. However, the interpretability of purely data-driven models, without any mechanistic basis is often complicated, and predictive power by itself can be a poor metric by which we might want to judge different methods. In this work, we focus on the relatively new modeling techniques of neural ordinary differential equations. We discuss how they relate to machine learning and mechanistic models, with the potential to narrow the gulf between these two frameworks: they constitute a class of hybrid model that integrates ideas from data-driven and dynamical systems approaches. Training neural ODEs as representations of dynamical systems data has its own specific demands, and we here propose a collocation scheme as a fast and efficient training strategy. This alleviates the need for costly ODE solvers. We illustrate the advantages that collocation approaches offer, as well as their robustness to qualitative features of a dynamical system, and the quantity and quality of observational data. We focus on systems that exemplify some of the hallmarks of complex dynamical systems encountered in systems biology, and we map out how these methods can be used in the analysis of mathematical models of cellular and physiological processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available