4.7 Article

Respiratory syncytial virus induces NRF2 degradation through a promyelocytic leukemia protein - ring finger protein 4 dependent pathway

Journal

FREE RADICAL BIOLOGY AND MEDICINE
Volume 113, Issue -, Pages 494-504

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2017.10.380

Keywords

Respiratory syncytial virus; Antioxidant enzymes; NRF2; SUMOylation; Ubiquitination; PML nuclear bodies; KEAP1; RNF4

Funding

  1. NIH [AI122142, AI25434, AI062885, ES026782]
  2. Clinical and Translational Science Award NRSA (TL1) Training Core from NIH [TL1TR001440]

Ask authors/readers for more resources

Respiratory syncytial virus (RSV) is the most important cause of viral acute respiratory tract infections and hospitalizations in children, for which no vaccine or specific treatments are available. RSV causes airway mucosa inflammation and cellular oxidative damage by triggering production of reactive oxygen species and by inhibiting at the same time expression of antioxidant enzymes, via degradation of the transcription factor NF-E2-related factor 2 (NRF2). RSV infection induces NRF2 deacetylation, ubiquitination, and degradation through a proteasome-dependent pathway. Although degradation via KEAP1 is the most common mechanism, silencing KEAP1 expression did not rescue NRF2 levels during RSV infection. We found that RSV-induced NRF2 degradation occurs in an SUMO-specific E3 ubiquitin ligase - RING finger protein 4 (RNF4)-dependent manner. NRF2 is progressively SUMOylated in RSV infection and either blocking SUMOylation or silencing RNF4 expression rescued both NRF2 nuclear levels and transcriptional activity. RNF4 associates with promyelocytic leukemia - nuclear bodies (PML-NBs). RSV infection induces the expression of PML and PML-NBs formation in an interferon (INF)-dependent manner and also induces NRF2 - PMN-NBs association. Inhibition of PML-NB formation by blocking IFN pathway or silencing PML expression resulted in a significant reduction of RSV-associated NRF2 degradation and increased antioxidant enzyme expression, identifying the RNF4-PML pathway as a key regulator of antioxidant defenses in the course of viral infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available