4.5 Article

Intercomparison of arctic XH2O observations from three ground-based Fourier transform infrared networks and application for satellite validation

Journal

ATMOSPHERIC MEASUREMENT TECHNIQUES
Volume 14, Issue 3, Pages 1993-2011

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/amt-14-1993-2021

Keywords

-

Funding

  1. European Space Agency [ESA-IPL-POELG-cl-LE-2015-1129, 4000127561/19/INS, 4000121212/17/I-EF, 4000121212/17/I-EF CCN1]
  2. Deutsche Forschungsgemeinschaft [290612604, 416767181]
  3. Ministry of Science, Research and the Arts Baden-Wurttemberg
  4. Federal Ministry of Education and Research

Ask authors/readers for more resources

This study compares COCCON and TCCON water vapor mole fraction retrievals in northern regions, showing good overall agreement and revealing that COCCON has reduced biases compared to TCCON. The research also indicates that the data provided by COCCON is of good quality and could potentially serve as a complement to the TCCON network for satellite validation efforts.
In this paper, we compare column-averaged dry-air mole fractions of water vapor (XH2O) retrievals from the COllaborative Carbon Column Observing Network (COC-CON) with retrievals from two co-located high-resolution Fourier transform infrared (FTIR) spectrometers as references at two boreal sites, Kiruna, Sweden, and Sodankyla, Finland, from 6 March 2017 to 20 September 2019. In the framework of the Network for the Detection of Atmospheric Composition Change (NDACC), an FTIR spectrometer is operated at Kiruna. The H2O product derived from these observations has been generated with the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) processor. In Sodankyla, a Total Carbon Column Observing Network (TCCON) spectrometer is operated, and the official XH2O data as provided by TCCON are used for this study. The datasets are in good overall agreement, with COCCON data showing a wet bias of (49.20 +/- 58.61) ppm ((3.33 +/- 3.37) %, R-2 = 0.9992) compared with MUSICA NDACC and (56.32 +/- 45.63) ppm ((3.44 +/- 1.77) %, R-2 = 0.9997) compared with TCCON. Furthermore, the a priori H2O volume mixing ratio (VMR) profiles (MAP) used as a priori information in the TCCON retrievals (also adopted for COCCON retrievals) are evalu-ated with respect to radiosonde (Vaisala RS41) profiles at Sodankyla. The MAP and radiosonde profiles show similar shapes and a good linear correlation of integrated XH2O, indicating that MAP is a reasonable approximation of the true atmospheric state and an appropriate choice for the scaling retrieval methods as applied by COCCON and TCCON. COCCON shows a reduced dry bias (-14.96 %) in comparison with TCCON (-19.08 %) with respect to radiosonde XH2O. Finally, we investigate the quality of satellite data at high latitudes. For this purpose, the COCCON XH2O is compared with retrievals from the Infrared Atmospheric Sounding Interferometer (IASI) generated with the MUSICA processor (MUSICA IASI) and with retrievals from the TRO-POspheric Monitoring Instrument (TROPOMI). Both paired datasets generally show good agreement and similar correlations at the two sites. COCCON measures 4.64% less XH2O at Kiruna and 3.36% less at Sodankyla with respect to MUSICA IASI, whereas COCCON measures 9.71% more XH2O at Kiruna and 7.75% more at Sodankyla compared with TROPOMI. Our study supports the assumption that COCCON also delivers a well-characterized XH2O data product. This emphasizes that this approach might complement the TCCON network with respect to satellite validation efforts. This is the first published study where COCCON XH2O has been compared with MUSICA NDACC and TCCON retrievals and has been used for MUSICA IASI and TROPOMI validation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available