4.7 Article

Alkali treatment facilitates functional nano-hydroxyapatite coating of 3D printed polylactic acid scaffolds

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2020.111686

Keywords

3D printing; Polylactic acid scaffold; Alkali treatment; Nano-hydroxyapatite; Surface functionalisation; Mechanical properties

Funding

  1. Mississippi State University's Bagley College of Engineering, Office of Research and Economic Development
  2. Institute for Imaging and Analytical Technologies

Ask authors/readers for more resources

This study conducted a series of experiments on PLA/6hAT/nHA scaffolds, and found properties beneficial for cancellous bone regeneration. The 6-hour alkali treatment improved nHA coating and hydrophilicity, reducing strut width and stiffness.
Autografting is currently the gold standard for treatment of bone defects, but has shown disadvantages in the limited volume of and donor site morbidity associated with harvested bone. Customized bone scaffolds that mimic the mechanical and biological properties of native bone are needed to augment the currently limited bone regeneration strategies. To achieve this goal, a repeated cross-hatch structure with uniform cubic pores was designed and 3D printed using polylactic acid (PLA) via fused deposition modeling (FDM). PLA surfaces were modified by wet chemical (alkali) treatment for either 1 h (1hAT) or 6 h (6hAT), followed by coating with nanohydroxyapatite (nHA). Our hypotheses were that: (i) 6-hour (but not 1-hour) alkali treatment would enhance nHA coating, (ii) the nHA coating on the 6-hour alkali-treated surface would increase hydrophilicity and cell attachment/proliferation, and (iii) stiffness, but not effective Young's modulus, would be reduced by 6-hour alkali treatment. The effects of AT and nHA coating on scaffold morphology was observed by scanning electron microscopy and quantified using a custom MATLAB script. Chemical composition and hydrophilicity were evaluated via energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy, and water contact angle analyses, respectively. Mechanical testing and in vitro cell culture were further employed to analyze compressive properties, and cell attachment and proliferation, respectively. As expected, 6hAT led to reduced strut width and stiffness, while improving the nHA coating and hydrophilicity. Interestingly, PLA/6hAT but not PLA/6hAT/nHA demonstrated a reduction in effective modulus compared to PLA and PLA/nHA scaffolds. From in vitro experiments, the combined PLA/6hAT/nHA modification resulted in the greatest extent of cell attachment but not proliferation. These results collectively demonstrate that the PLA/6hAT/nHA scaffold exhibits properties that may prove beneficial for cancellous bone regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available