3.9 Article

A Physics-Aware Neural Network Approach for Flow Data Reconstruction From Satellite Observations

Journal

FRONTIERS IN CLIMATE
Volume 3, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fclim.2021.656505

Keywords

deep learning-CNN; Karman vortex street; cloud motion winds; satellite wind data; wind velocity retrieval

Funding

  1. Swiss National Science Foundation [CRSK-2_190296]
  2. Swiss National Science Foundation (SNF) [CRSK-2_190296] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

The accuracy of physical transport assessment is affected by noise in satellite-based wind retrievals and limited by sensor resolution. Reconstructing a continuous velocity field is crucial but challenging, with ambiguity due to missing visible clouds. The study demonstrates that a learning-based reconstruction method outperforms traditional models in handling large areas of missing data.
An accurate assessment of physical transport requires high-resolution and high-quality velocity information. In satellite-based wind retrievals, the accuracy is impaired due to noise while the maximal observable resolution is bounded by the sensors. The reconstruction of a continuous velocity field is important to assess transport characteristics and it is very challenging. A major difficulty is ambiguity, since the lack of visible clouds results in missing information and multiple velocity fields will explain the same sparse observations. It is, therefore, necessary to regularize the reconstruction, which would typically be done by hand-crafting priors on the smoothness of the signal or on the divergence of the resulting flow. However, the regularizers can smooth the solution excessively and will not guarantee that possible solutions are truly physically realizable. In this paper, we demonstrate that data recovery can be learned by a neural network from numerical simulations of physically realizable fluid flows, which can be seen as a data-driven regularization. We show that the learning-based reconstruction is especially powerful in handling large areas of missing or occluded data, outperforming traditional models for data recovery. We quantitatively evaluate our method on numerically-simulated flows, and additionally apply it to a Guadalupe Island case study-a real-world flow data set retrieved from satellite imagery of stratocumulus clouds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available