4.8 Review

Atomically precise graphene nanoribbons: interplay of structural and electronic properties

Journal

CHEMICAL SOCIETY REVIEWS
Volume 50, Issue 11, Pages 6541-6568

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0cs01541e

Keywords

-

Funding

  1. Netherlands Organization for Scientific Research (NWO) [680-47-633]
  2. Zernike Institute for Advanced Materials of the University of Groningen

Ask authors/readers for more resources

Graphene nanoribbons show great potential for future applications in nanoelectronic devices by combining excellent electronic properties with tunability through precise control over width and edge structure. Research has led to a variety of graphene nanoribbons with different properties, highlighting the importance of precursor design in determining final electronic structure. The ability to fine-tune properties through precursor design has generated significant research interest and potential for future applications, as demonstrated by selected device prototypes.
Graphene nanoribbons hold great promise for future applications in nanoelectronic devices, as they may combine the excellent electronic properties of graphene with the opening of an electronic band gap - not present in graphene but required for transistor applications. With a two-step on-surface synthesis process, graphene nanoribbons can be fabricated with atomic precision, allowing precise control over width and edge structure. Meanwhile, a decade of research has resulted in a plethora of graphene nanoribbons having various structural and electronic properties. This article reviews not only the on-surface synthesis of atomically precise graphene nanoribbons but also how their electronic properties are ultimately linked to their structure. Current knowledge and considerations with respect to precursor design, which eventually determines the final (electronic) structure, are summarized. Special attention is dedicated to the electronic properties of graphene nanoribbons, also in dependence on their width and edge structure. It is exactly this possibility of precisely changing their properties by fine-tuning the precursor design - offering tunability over a wide range - which has generated this vast research interest, also in view of future applications. Thus, selected device prototypes are presented as well.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available