4.6 Article

Steering droplets on substrates using moving steps in wettability

Journal

SOFT MATTER
Volume 17, Issue 9, Pages 2454-2467

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0sm02082f

Keywords

-

Funding

  1. DFG (German Research Foundation) via Collaborative Research Center [910]

Ask authors/readers for more resources

In this study, a boundary-element method was used to simulate the movement of droplets on substrates with spatio-temporal wettability patterns. It was found that droplets move towards higher wettability regions in step profile wettability patterns and a feedback loop can maintain a constant velocity for droplets surfing on wettability steps.
Droplets move on substrates with a spatio-temporal wettability pattern as generated, for example, on light-switchable surfaces. To study such cases, we implement the boundary-element method to solve the governing Stokes equations for the fluid flow field inside and on the surface of a droplet and supplement it by the Cox-Voinov law for the dynamics of the contact line. Our approach reproduces the relaxation of an axisymmetric droplet in experiments, which we initiate by instantaneously switching the uniform wettability of a substrate quantified by the equilibrium contact angle. In a step profile of wettability the droplet moves towards higher wettability. Using a feedback loop to keep the distance or offset between step and droplet center constant, induces a constant velocity with which the droplet surfs on the wettability step. We analyze the velocity in terms of droplet offset and step width for typical wetting parameters. Moving instead the wettability step with constant speed, we determine the maximally possible droplet velocities under various conditions. The observed droplet speeds agree with the values from the feedback study for the same positive droplet offset.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available