4.3 Article

Biocide Tolerance and Antibiotic Resistance in Salmonella Isolates from Hen Eggshells

Journal

FOODBORNE PATHOGENS AND DISEASE
Volume 14, Issue 2, Pages 89-95

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/fpd.2016.2182

Keywords

Salmonella; antimicrobial resistance; biocide tolerance; eggshells

Funding

  1. University of Jaen (Plan de Apoyo a la investigacion, proyectos en Biomedicina) [UJA2013/10/06]

Ask authors/readers for more resources

The aim of the present study was to determine biocide tolerance and antibiotic resistance in Salmonella isolates from hen eggshells. A total of 39 isolates from hen eggshells, identified as either Salmonella spp. or Salmonella enterica according to 16S rDNA sequencing, were selected for biocide tolerance. Isolates with minimum inhibitory concentrations (MICs) above the wild-type MICs were considered to be biocide tolerant: benzalkonium chloride (BC, 7.7%), cetrimide (CT, 7.7%), hexadecylpyridinium chloride (HDP, 10.3%), triclosan (TC, 17.9%), hexachlorophene (CF, 30.8%), and P3-oxonia (OX, 25.6%). The resulting 21 biocide-tolerant isolates were further characterized. Most isolates (95.2%) were resistant to ampicillin, but only 9.5% were resistant to cefotaxime as well as to ceftazidime. Resistance to chloramphenicol (61.9%), tetracycline (47.6%), streptomycin (19.0%), nalidixic acid (28.6%), ciprofloxacin (9.5%), netilmicin (14.3%), and trimethoprim-sulfamethoxazole (38.1%) was also detected. Considering only antibiotics, 66.7% of isolates were multiresistant; furthermore, 90.5% were multiresistant considering antibiotics and biocides combined. Efflux pump and biocide tolerance genetic determinants detected included acrB (95.2%), oqxA (14.3%), mdfA (9.5%), qacA/B (4.8%), and qacE (9.5%). Antibiotic resistance genes detected included blaTEM (14.3%), blaCTXM-2 (4.8%), blaPSE (4.8%), floR (19.05%), tet(A) (9.5%), tet(C) (4.8%), dfrA12 (0.05%), and dfrA15 (0.05%). Significant positive correlations were detected between phenotypic tolerance/resistance to biocides, biocides and antibiotics, and also between antibiotics, suggesting that a generalized use of biocides could co-select antibiotic resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available