4.6 Article

Rapid, in situ detection of chemical warfare agent simulants and hydrolysis products in bulk soils by low-cost 3D-printed cone spray ionization mass spectrometry

Journal

ANALYST
Volume 146, Issue 10, Pages 3127-3136

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1an00255d

Keywords

-

Funding

  1. Naval Air Warfare Center Weapons Division Ignites program
  2. National Research Council Fellowship
  3. NIJ Award from the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice [2017-R2-CX-0022]

Ask authors/readers for more resources

CWAs are toxic chemicals used as weapons and prohibited under the Chemical Weapons Convention, but the threat of deployment remains. 3D-PCSI technology provides a rapid, simple, and cost-effective method for detecting trace CWAs in soil matrices.
Chemical warfare agents (CWAs) are toxic chemicals that have been used as disabling or lethal weapons in war, terrorist attacks, and assasinations. The Chemical Weapons Convention (CWC) has prohibited the use, development, production, and stockpiling of CWAs since its initiation in 1997, however, the threat of deployment still looms. Detection of trace CWAs post-deployment or post-remediation, in bulk matrices such as soil, often requires lengthy sample preparation steps or extensive chromatographic separation times. 3D-printed cone spray ionization (3D-PCSI), an ambient ionization mass spectrometric (MS) technique, provides a rapid, simple, and low-cost method for trace CWA analysis in soil matrices for both in-laboratory and in-field detection. Described here is the utilization of conductive 3D-printed cones to perform both rapid sampling and ionization for CWA simulants and hydrolysis products in eight solid matrices. The analysis of trace quantities of CWA simulants and hydrolysis products by 3D-PCSI-MS coupled to both a commercial benchtop system and a field-portable MS system is detailed. Empirical limits of detection (LOD) for CWA simulants on the benchtop MS ranged from 100 ppt to 750 ppb and were highly dependant on solid matrix composition, with the portable system yielding similar spectral data from alike matrices, albeit with lower sensitivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available