4.8 Review

Discrete metal nanoparticles with plasmonic chirality

Journal

CHEMICAL SOCIETY REVIEWS
Volume 50, Issue 6, Pages 3738-3754

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cs00765b

Keywords

-

Funding

  1. National Natural Science Foundation of China [21902148]
  2. Spanish Ministerio de Ciencia e Innovacion [PID2019-108954R, MAT2017-86659-R, MDM-2017-0720]
  3. Innovation and Technology Commission of Hong Kong
  4. Hong Kong Polytechnic University

Ask authors/readers for more resources

Chiral objects lack mirror planes and inversion symmetry, exhibiting the same physical properties as their mirror images except for often opposite chiroptical activity. Recent studies have shown interesting implications of chirality on the optical properties of metal nanoparticles, specifically related to localized surface plasmon resonance phenomena.
From a geometrical perspective, a chiral object does not have mirror planes or inversion symmetry. It exhibits the same physical properties as its mirror image (enantiomer), except for the chiroptical activity, which is often the opposite. Recent advancements have identified particularly interesting implications of chirality on the optical properties of metal nanoparticles, which are intimately related to localized surface plasmon resonance phenomena. Although such resonances are usually independent of the circular polarization of light, specific strategies have been applied to induce chirality, both in assemblies and at the single-particle level. In this tutorial review, we discuss the origin of plasmonic chirality, as well as theoretical models that have been proposed to explain it. We then summarise recent developments in the synthesis of discrete nanoparticles with plasmonic chirality by means of wet-chemistry methods. We conclude with a discussion of promising applications for discrete chiral nanoparticles. We expect this tutorial review to be of interest to researchers from a wide variety of disciplines where chiral plasmonics can be exploited at the nanoparticle level, such as chemical sensing, photocatalysis, photodynamic or photothermal therapies, etc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available