4.7 Article

Gelation of cereal β-glucan at low concentrations

Journal

FOOD HYDROCOLLOIDS
Volume 73, Issue -, Pages 60-66

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2017.06.026

Keywords

beta-Glucan; Gelation; Oxidation; Dissolution temperature

Funding

  1. Academy of Finland [258821]
  2. August Johannes ja Aino Tiuran Maatalouden Tutkimussaatio [601]
  3. Academy of Finland (AKA) [258821, 258821] Funding Source: Academy of Finland (AKA)

Ask authors/readers for more resources

Viscosity of cereal beta-glucan during digestion is considered to be a vital factor for its health effects. Thus, studies on solution properties and gelation are essential for understanding the mechanisms of the beta-glucan functionality. The aim of this study was to investigate the effect of the dissolution temperature on gelation of cereal beta-glucan at low concentrations that are relevant for food products. The rheological properties of oat and barley beta-glucans (OBG and BBG) using three dissolution temperatures (37 degrees C, 57 degrees C and 85 degrees C) at low concentration (1.5% and 1%, respectively) were studied for 7 days. Additionally, the beta-glucans were oxidised with 70 mM H2O2 and 1 mM FeSO4 x 7H(2)O as a catalyst, to evaluate the consequence of oxidative degradation on the gelation properties. The study showed that dissolution at 85 degrees C did not result in gelation. The optimal dissolution temperature for gelation of OBG was 37 degrees C and for gelation of BBG 57 degrees C. At these temperatures, also the oxidised OBG and BBG gelled, although the gel strength was somewhat lower than in the non-oxidised ones. Gelation was suggested to require partial dissolution of beta-glucan, which depended on the molar mass and aggregation state of the beta-glucan molecule. Therefore, the state of beta-glucan in solution and its thermal treatment history may affect its technological and physiological functionality. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available