4.6 Review

Vanadium-based cathodes for aqueous zinc-ion batteries: from crystal structures, diffusion channels to storage mechanisms

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 9, Issue 9, Pages 5258-5275

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta10336e

Keywords

-

Funding

  1. National Natural Science Foundation of China [21503193, U1704149]
  2. Natural Science Foundation of Henan province [212300410300, 212300410416]
  3. Natural Science Foundation of Tianjin [18JCZDJC31100]

Ask authors/readers for more resources

Aqueous zinc ion batteries with metallic zinc anodes and aqueous electrolytes are cost-effective, safe, abundant in elements, and have competitive gravimetric energy density. Compared to other cathode materials, vanadium-based compounds offer higher capacity, power density, and cycle life. Recent advances in vanadium-based cathodes are discussed, focusing on the correlation between structures, electrode performances, and energy-storage mechanisms, as well as highlighting remaining issues and performance-enhancement strategies.
Aqueous zinc ion batteries employing metallic zinc anodes and aqueous electrolytes are highly attractive electrochemical energy storage devices owing to their cost effectiveness, intrinsic safety, elemental abundance and competitive gravimetric energy density. Compared with other cathode materials, vanadium-based compounds feature advantages such as higher capacity, higher power density and longer cycle life. Here, a comprehensive review is presented on recent advances of vanadium-based cathodes, focusing on the correlation between the structures and electrode performances as well as energy-storage mechanisms. The structure and electrochemical properties of vanadium-based cathode materials are discussed by categorizing Zn2+ diffusion channels including one-dimensional tunnels, two-dimensional planes, three-dimensional interpenetrating networks and zero-dimensional diffusion channels. Furthermore, the remaining issues of vanadium-based cathodes are highlighted and promising performance-enhancement strategies are overviewed from aspects such as lattice control, vacancy/defect engineering, and pre-intercalation of cations and/or molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available