4.7 Article

Last interglacial sea levels within the Gulf of Mexico and northwestern Caribbean Sea

Journal

EARTH SYSTEM SCIENCE DATA
Volume 13, Issue 3, Pages 1419-1439

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/essd-13-1419-2021

Keywords

-

Funding

  1. ERC Starting Grant WARM-COASTS [ERC-StG-802414]

Ask authors/readers for more resources

This study examines the sea level variations during the last interglacial period, with a focus on the northern Gulf of Mexico and Caribbean shoreline of the Yucatan Peninsula. By analyzing existing data, the study reveals regional differences in sea levels and provides insights into the past distribution of ice sheets and local tectonic activities.
During the last interglacial (LIG) the volume of additional water in the world's oceans was large enough to raise global sea levels about 6-9m higher than present levels. However, LIG sea levels vary regionally and those regional differences hold clues about the past distribution of ice sheets and local rates of subsidence and tectonic uplift. In this study, I used a standardized database template to review and summarize the existing constraints on LIG sea levels across the northern Gulf of Mexico and Caribbean shoreline of the Yucatan Peninsula. In total, I extracted 32 sea-level indicators including the insertion of 16 U-series ages on corals, 1 electron spin resonance age, 2 amino acid racemization ages, and 26 luminescence ages. Most dated sea-level indicators for the northern Gulf of Mexico are based on optically stimulated luminescence (OSL) ages of beach deposits of a mappable LIG shoreline. This shoreline extends from the Florida Panhandle through south Texas but is buried or removed by the Mississippi River across most of Louisiana. A similar feature is observed in satellite images south of the Rio Grande within the Mexican portions of the Gulf of Mexico but has yet to be dated. Elevations measured on portions of this feature close to the modern coast point to sea levels less than 1m to similar to 5m higher than present for much of the northern Gulf of Mexico. However, a few, albeit undated, portions of the same shoreline located at more inland locations point to sea levels up to +7.2 m, attesting to up to 7m of differential subsidence between the inland and coastal sites. Across the Yucatan Peninsula, U-series dating of corals has provided the main index points for LIG sea levels. Other carbonate coastal features such as beach ridges and eolianites have also been described but rely on corals for their dating. The maximum elevation of the LIG coral-based relative sea-level (RSL) estimates decrease from around +6m across the Caribbean shoreline of the Yucatan Peninsula near Cancun, Mexico, to as low as -6m to the south beneath the southern atolls of Belize, although discussion continues as to the validity of the ages for these southern corals. If these lower-elevation corals are LIG in age, their below-present elevations may be a result of vertical motion along faults dipping into the Cayman Trough. South of Belize only one purported LIG coral has been dated on the Isla de Roatan off the coast of Honduras at a likely tectonically uplifted elevation of 37.2 m. Thus the elevation of LIG sea levels within the inland siliciclastic shorelines of Guatemala and Honduras as well as the southwestern Gulf of Mexico remains poorly constrained and a potential venue for future research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available