4.6 Article

Ligand-assisted solid phase synthesis of mixed-halide perovskite nanocrystals for color-pure and efficient electroluminescence

Journal

JOURNAL OF MATERIALS CHEMISTRY C
Volume 9, Issue 17, Pages 5771-5778

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0tc04667a

Keywords

-

Funding

  1. Swiss National Science Foundation [200021-178944]
  2. ETH research grant [ETH-33 18-2]
  3. European Research Council (ERC) [N849229 - CQWLED]
  4. Swiss National Science Foundation (SNF) [200021_178944] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

A new post-synthetic approach of ligand-assisted solid phase synthesis (LASPS) has been demonstrated for the preparation of electroluminescent colloidal nanocrystals (NCs) of lead halide perovskites of methylammonium (MA) at room temperature, showing emission covering the entire visible spectral region. The resulting NCs have photoluminescence (PL) quantum yields (QYs) of up to >90% and colloidal stability up to several months. LEDs fabricated using the prepared mixed-halide NCs display narrowband electroluminescence (EL) ranging from 476 to 720 nm.
Colloidal nanocrystals (NCs) of lead halide perovskites have generated considerable interest in the fabrication of optoelectronic devices, such as light emitting-diodes (LEDs), because of their tunable optical bandgap, narrow spectral width, and high defect tolerance. However, the inhomogeneous halide distribution within individual NCs remains a critical challenge in order to obtain color-stable electroluminescence in mixed-halide systems. Here, we demonstrate a new post-synthetic approach, ligand-assisted solid phase synthesis (LASPS), for the preparation of electroluminescent colloidal NCs of methylammonium (MA) lead halide perovskites, at room temperature. The slow reaction kinetics preserves the morphology, size, and shape in the resulting NCs whose emission covers the entire visible spectral region with photoluminescence (PL) quantum yields (QYs) of up to >90% and colloidal stability up to several months. The LEDs fabricated using the prepared mixed-halide NCs display narrowband electroluminescence (EL) ranging from 476 to 720 nm. The optimized red LEDs exhibit an external quantum efficiency, eta(ext), of up to 2.65%, with the CIE 1931 color coordinates of (0.705, 0.290), nearly identical to those of the red primary in the recommendation (rec.) 2020 standard (0.708, 0.292).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available