4.8 Article

Control of neurogenic competence in mammalian hypothalamic tanycytes

Journal

SCIENCE ADVANCES
Volume 7, Issue 22, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abg3777

Keywords

-

Funding

  1. Maryland Stem Cell Postdoctoral Research Fellowship [DK108230]
  2. [P30NS050274]

Ask authors/readers for more resources

Disruption of the NFI family of transcription factors stimulates tanycyte proliferation and neurogenesis in the postnatal hypothalamus. NFI factors repress Shh and Wnt signaling in tanycytes, controlling proliferation and neurogenesis. Tanycytes deficient in Nfia/b/x give rise to various hypothalamic neuronal subtypes, suggesting potential for remodeling hypothalamic neural circuitry.
Hypothalamic tanycytes, radial glial cells that share many features with neuronal progenitors, can generate small numbers of neurons in the postnatal hypothalamus, but the identity of these neurons and the molecular mechanisms that control tanycyte-derived neurogenesis are unknown. In this study, we show that tanycyte-specific disruption of the NFI family of transcription factors (Nfia/b/x) robustly stimulates tanycyte proliferation and tanycyte-derived neurogenesis. Single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analysis reveals that NFI (nuclear factor I) factors repress Sonic hedgehog (Shh) and Wnt signaling in tanycytes and modulation of these pathways blocks proliferation and tanycyte-derived neurogenesis in Nfia/b/x-deficient mice. Nfia/b/x-deficient tanycytes give rise to multiple mediobasal hypothalamic neuronal subtypes that can mature, fire action potentials, receive synaptic inputs, and selectively respond to changes in internal states. These findings identify molecular mechanisms that control tanycyte-derived neurogenesis, which can potentially be targeted to selectively remodel the hypothalamic neural circuitry that controls homeostatic physiological processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available