4.3 Article

Calorimetric Study of Cowpea Protein Isolates. Effect of Calcium and High Hydrostatic Pressure

Journal

FOOD BIOPHYSICS
Volume 12, Issue 3, Pages 374-382

Publisher

SPRINGER
DOI: 10.1007/s11483-017-9493-4

Keywords

Cowpea proteins; DSC; Protein denaturation; Baroprotection

Funding

  1. BEC.AR program from Argentina

Ask authors/readers for more resources

The thermal properties of cowpea protein isolates (CPI) were studied by differential scanning calorimetry under the influence of various conditions. An increase in the pH of protein extraction, from 8.0 to 10.0, during CPI preparation promoted a partial denaturation of cowpea proteins. Increases in enthalpy change of denaturation (Delta H) and temperature of denaturation (Td) were detected with increasing protein concentration from 7.5 to 10.5% (w/w). This behavior suggests that denaturation involves a first step of dissociation of protein aggregates. Calcium induced thermal stabilization in cowpea proteins, the increase in Td was ca. 0.3 A degrees C/mM for protein dispersions of 7.5% (w/w) for 0 to 40 mM CaCl2. High hydrostatic pressure (HHP) induced denaturation in CPI in a pressure level dependent manner. The presence of calcium protected cowpea proteins towards HHP-induced denaturation when pressure level was 400 MPa, but not when it was 600 MPa. Thermal properties of cowpea protein isolates were very sensitive to processing conditions, these behaviors would have implications in processing of CPI-containing foodstuff.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available