4.1 Article

Clinopyroxene Crystals in Basic Lavas of the Marsili Volcano Chronicle Early Magmatic Stages in a Back-Arc Transcrustal Mush System

Journal

GEOSCIENCES
Volume 11, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/geosciences11040159

Keywords

back-arc basin; plumbing system; crystal mush; magma petrogenesis; clinopyroxene

Funding

  1. CNR under the Flagship Project RITMARE

Ask authors/readers for more resources

Investigating crystals from back-arc lavas can help understand the transition of magmas from basalt to andesite compositions. Mantle melts injected into the crust cool and crystallize, forming a clinopyroxene-dominated mush before feeding volcanic eruptions. The heterogeneity in the clinopyroxene archive offers insights into the early magmatic processes of magma evolution.
Constraining the pre-eruptive processes that modulate the chemical evolution of erupted magmas is a challenge. An opportunity to investigate this issue is offered by the interrogation of the crystals carried in lavas. Here, we employ clinopyroxene crystals from back-arc lavas in order to identify the processes driving basalt to andesite magma evolution within a transcrustal plumbing system. The assembled clinopyroxene archive reveals that mantle melts injected at the crust-mantle transition cool and crystalize, generating a clinopyroxene-dominated mush capped by a melt-rich domain. Magma extracted from this deep storage zone fed the eruption of basalt to basaltic andesite lavas. In addition, chemically evolved melts rapidly rising from this zone briefly stalled at shallow crustal levels, sourcing crystal-poor andesite lavas. Over time, hot ascending primitive magmas intercepted and mixed with shallower cooling magma bodies forming hybrid basic lavas. The blended clinopyroxene cargoes of these lavas provide evidence for the hybridization, which is undetectable from a whole-rock chemical perspective, as mixing involved chemically similar basic magmas. The heterogeneity we found within the clinopyroxene archive is unusual since it provides, for the first time, a complete set of mush-related scenarios by which mantle melts evolve from basalt to andesite compositions. Neither the whole-rock chemistry alone nor the record of the mineral phases crystallizing subsequent to clinopyroxene can provide insights on such early magmatic processes. The obtained clinopyroxene archive can be used as a template for interpretation of the record preserved in the clinopyroxene cargoes of basalt to andesite lavas elsewhere, giving insights into the magma dynamics of the feeding plumbing system that are lost when using whole-rock chemistry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available