4.7 Review

Temperate Fruit Trees under Climate Change: Challenges for Dormancy and Chilling Requirements in Warm Winter Regions

Journal

HORTICULTURAE
Volume 7, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/horticulturae7040086

Keywords

deciduous fruit trees; bud phenology; bud dormancy; endo-dormancy; para-dormancy; eco-dormancy; chilling hours; Utah model; dynamic model

Categories

Funding

  1. NKFI [K131478]
  2. Ministry for Innovation and Technology in Hungary [TKP2020-NKA-04]

Ask authors/readers for more resources

Adequate chill is crucial for deciduous fruit trees, but temperate fruit trees in warm winter regions face challenges with dormancy and chilling requirements under climate change. The review discusses the effects of climate change on these parameters and the development of models to improve adaptation in tropical and subtropical environments.
Adequate chill is of great importance for successful production of deciduous fruit trees. However, temperate fruit trees grown under tropical and subtropical regions may face insufficient winter chill, which has a crucial role in dormancy and productivity. The objective of this review is to discuss the challenges for dormancy and chilling requirements of temperate fruit trees, especially in warm winter regions, under climate change conditions. After defining climate change and dormancy, the effects of climate change on various parameters of temperate fruit trees are described. Then, dormancy breaking chemicals and organic compounds, as well as some aspects of the mechanism of dormancy breaking, are demonstrated. After this, the relationships between dormancy and chilling requirements are delineated and challenging aspects of chilling requirements in climate change conditions and in warm winter environments are demonstrated. Experts have sought to develop models for estimating chilling requirements and dormancy breaking in order to improve the adaption of temperate fruit trees under tropical and subtropical environments. Some of these models and their uses are described in the final section of this review. In conclusion, global warming has led to chill deficit during winter, which may become a limiting factor in the near future for the growth of temperate fruit trees in the tropics and subtropics. With the increasing rate of climate change, improvements in some managing tools (e.g., discovering new, more effective dormancy breaking organic compounds; breeding new, climate-smart cultivars in order to solve problems associated with dormancy and chilling requirements; and improving dormancy and chilling forecasting models) have the potential to solve the challenges of dormancy and chilling requirements for temperate fruit tree production in warm winter fruit tree growing regions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available