4.7 Article Data Paper

CDIAC-FF: global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751-2017

Journal

EARTH SYSTEM SCIENCE DATA
Volume 13, Issue 4, Pages 1667-1680

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/essd-13-1667-2021

Keywords

-

Ask authors/readers for more resources

Global- and national-scale inventories of CO2 emissions are important for countries to reduce emissions. The CDIAC-FF dataset, covering all countries and years since 1751, has been updated with changes in calculating CO2 emissions and analyzed for trends and unique factors driving emissions in countries. Diverse strategies are needed to mitigate carbon emissions and anthropogenic climate change.
Global- and national-scale inventories of carbon dioxide (CO2) emissions are important tools as countries grapple with the need to reduce emissions to minimize the magnitude of changes in the global climate system. The longest time series dataset on global and national CO2 emissions, with consistency over all countries and all years since 1751, has long been the dataset generated by the Carbon Dioxide Information and Analysis Center (CDIAC), formerly housed at Oak Ridge National Laboratory. The CDIAC dataset estimates emissions from fossil fuel combustion and cement manufacture, by fuel type, using the United Nations energy statistics and global cement production data from the United States Geological Survey. Recently, the maintenance of the CDIAC dataset was transferred to Appalachian State University, and the dataset is now identified as CDIAC-FF. This paper describes the annual update of the time series of emissions with estimates through 2017; there is typically a 2- to 3-year time lag in the processing of the two primary datasets used for the estimation of CO2 emissions. We provide details on two changes to the approach to calculating CO2 emissions that have been implemented in the transition from CDIAC to CDIAC-FF: refinement in the treatment of changes in stocks at the global level and changes in the procedure to calculate CO2 emissions from cement manufacture. We compare CDIAC-FF's estimates of CO2 emissions with other global and national datasets and illustrate the trends in emissions (1990-2015) using a decomposition analysis of the Kaya identity. The decompositions for the top 10 emitting countries show that, although similarities exist, countries have unique factors driving their patterns of emissions, suggesting the need for diverse strategies to mitigate carbon emissions to meditate anthropogenic climate change. The data for this particular version of CDIAC-FF are available at https://doi.org/10.5281/zenodo.4281271 (Gil-fillan et al., 2020a).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available