4.7 Article

Source apportionment of fine organic carbon at an urban site of Beijing using a chemical mass balance model

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 21, Issue 9, Pages 7321-7341

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-21-7321-2021

Keywords

-

Funding

  1. UK Natural Environment Research Council (NERC) [NE/N007190/1, NE/R005281/1]
  2. Royal Society Advanced Fellowship [NAFnR1n191220]
  3. NERC [NE/R005281/1] Funding Source: UKRI

Ask authors/readers for more resources

Fine particles were sampled in urban Beijing as part of field campaigns. Different components such as carbonaceous, inorganic ions, and organic compounds were determined for source apportionment. Results showed varying contributions of different components to PM2.5 in winter and summer, with carbonaceous components and secondary inorganic ions being significant sources.
Fine particles were sampled from 9 November to 11 December 2016 and 22 May to 24 June 2017 as part of the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-China) field campaigns in urban Beijing, China. Inorganic ions, trace elements, organic carbon (OC), elemental carbon (EC), and organic compounds, including biomarkers, hopanes, polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and fatty acids, were determined for source apportionment in this study. Carbonaceous components contributed on average 47.2% and 35.2% of total reconstructed PM2.5 during the winter and summer campaigns, respectively. Secondary inorganic ions (sulfate, nitrate, ammonium; SNA) accounted for 35.0% and 45.2% of total PM2.5 in winter and summer. Other components including inorganic ions (KC, NaC, Cl), geological minerals, and trace metals only contributed 13.2% and 12.4% of PM2.5 during the winter and summer campaigns. Fine OC was explained by seven primary sources (industrial and residential coal burning, biomass burning, gasoline and diesel vehicles, cooking, and vegetative detritus) based on a chemical mass balance (CMB) receptor model. It explained an average of 75.7% and 56.1% of fine OC in winter and summer, respectively. Other (unexplained) OC was compared with the secondary OC (SOC) estimated by the EC-tracer method, with correlation coefficients (R-2) of 0.58 and 0.73 and slopes of 1.16 and 0.80 in winter and summer, respectively. This suggests that the unexplained OC by the CMB model was mostly associated with SOC. PM2.5 apportioned by the CMB model showed that the SNA and secondary organic matter were the two highest contributors to PM2.5. After these, coal combustion and biomass burning were also significant sources of PM2.5 in winter. The CMB results were also compared with results from the positive matrix factorization (PMF) analysis of co-located aerosol mass spectrometer (AMS) data. The CMB model was found to resolve more primary organic aerosol (OA) sources than AMS-PMF, but the latter could apportion secondary OA sources. The AMS-PMF results for major components, such as coal combustion OC and oxidized OC, correlated well with the results from the CMB model. However, discrepancies and poor agreements were found for other OC sources, such as biomass burning and cooking, some of which were not identified in AMS-PMF factors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available