4.5 Article

Fabrication of hollow nanofibrous structures using a triple layering method for vascular scaffold applications

Journal

FIBERS AND POLYMERS
Volume 18, Issue 12, Pages 2342-2348

Publisher

KOREAN FIBER SOC
DOI: 10.1007/s12221-017-1009-9

Keywords

Nanofibrous yarn; Hollow yarn; Polymer; Nanofiber; Triple-layer yarn

Funding

  1. Amirkabir University of Technology

Ask authors/readers for more resources

This study aims to develop a new approach for fabricating hollow nanofibrous yarns by engineering a triple-layer structure (polyvinyl alcohol (PVA) multifilament core surrounded by a layer of PVA nanofibers and a polylactic acid (PLA) nanofiber outer layer). After fabrication of this 3-layer structure, the core portion was extracted, leaving the outer layer intact after dissolving the PVA nanofibers in water. To determine the optimum thickness of the outer layer, hollow nanofiber yarns with five different thicknesses were produced. A hollow nanofiber yarn was also produced using a common method to enable comparison of the methods. In the common method, a core sheath yarn consisting of a PVA multifilament core and a PLA nanofiber outer layer was fabricated, and a hollow yarn was produced by placing the core yarn in hot water. The results revealed facilitation of core extraction from the yarn body of the new 3-layer structure, which occurred due to rapid dissolution of the middle layer. The wicking behavior in the hollow yarn fabricated using the novel method followed the Locus Washburn equation and that of the hollow yarn produced from the core sheath yarn deviated from it. The results demonstrated that tensile properties of hollow nanofiber yarns were improved by increasing the thickness. Furthermore, hemolysis and cytotoxicity assays indicated that the fabricated hollow nanofibrous structure is non-toxic and blood compatible, indicating its potential for use in biomedical applications such as vascular scaffolds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available