4.6 Article

Droplet-based blood group antibody screening with laser incubation

Journal

ANALYST
Volume 146, Issue 8, Pages 2499-2505

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0an01993c

Keywords

-

Ask authors/readers for more resources

A simple diagnostic method using laser technology for immunohaematology has been developed, allowing accurate and sensitive detection of blood group antibodies with results quickly read by eye without specialist equipment or training. This method has the potential to lead to a point-of-care antibody screen.
Detection of blood group antibodies is a crucial step for blood transfusion recipients and pregnant women to prevent potentially fatal haemolytic reactions. Due to the short, non-bridging structure of such antibodies (IgG), the indirect antiglobulin test (IAT) is required, complete with a thermal incubation phase. This incubation step, where the sample must be heated to 37 degrees C for several minutes, has hitherto prevented chip- and paper-diagnostics from performing a complete IAT and instead required the IAT to be performed away from the patient beside in a laboratory setting with specialist equipment - significantly delaying blood transfusions. With recent laser technology for immunohaematology, a single blood droplet can be heated. This study presents a simple diagnostic where a single 15 mu L droplet sits on hydrophobic PTFE film and is heated by laser. The result of the test is then determined via placement of a paper strip where passive wicking and filtration of the sample separates positive from negative results. We demonstrate that this diagnostic can accurately and sensitively detect blood group antibodies, with results quickly read by eye without further specialist equipment or training, with potential to lead to a point-of-care antibody screen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available