4.6 Article

Structure illumination microscopy imaging of lipid vesicles in live bacteria with naphthalimide-appended organometallic complexes

Journal

ANALYST
Volume 146, Issue 12, Pages 3818-3822

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1an00363a

Keywords

-

Funding

  1. Curtin University
  2. Universita degli Studi di Modena e Reggio Emilia
  3. University of Sydney
  4. Australian Research Council Discovery Early Career Researcher Award

Ask authors/readers for more resources

New organometallic molecular probes have been developed for bacterial imaging, with the potential to support multiple imaging modalities.
There is a lack of molecular probes for imaging bacteria, in comparison to the array of such tools available for the imaging of mammalian cells. Here, organometallic molecular probes have been developed and assessed for bacterial imaging, designed to have the potential to support multiple imaging modalities. The chemical structure of the probes is designed around a metal-naphthalimide structure. The 4-amino-1,8-naphthalimide moiety, covalently appended through a pyridine ancillary ligand, acts as a luminescent probe for super-resolution microscopy. On the other hand, the metal centre, rhenium(i) or platinum(ii) in the current study, enables techniques such as nanoSIMS. While the rhenium(i) complex was not sufficiently stable to be used as a probe, the platinum(ii) analogue showed good chemical and biological stability. Structured illumination microscopy (SIM) imaging on live Bacillus cereus confirmed the suitability of the probe for super-resolution microscopy. NanoSIMS analysis was used to monitor the uptake of the platinum(ii) complex within the bacteria and demonstrate the potential of this chemical architecture to enable multimodal imaging. The successful combination of these two moieties introduces a platform that could lead to a versatile range of multi-functional probes for bacteria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available