4.1 Article

Remote Density Measurements of Molten Salts via Neutron Radiography

Journal

JOURNAL OF IMAGING
Volume 7, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/jimaging7050088

Keywords

molten salts; thermophysical properties; neutron radiography

Funding

  1. Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory [20190650DI, 20210113DR]
  2. U.S. Department of Energy (DOE) [89233218CNA000001]

Ask authors/readers for more resources

This study presents a novel approach to measuring densities of molten salt systems using neutron radiography. The results match well with previous literature values, confirming the viability of neutron radiography for measuring density as a function of temperature in molten salt systems. Additionally, advantages of using neutron radiography over other methods are discussed, with future work focusing on improving this technique.
With an increased interest in the use of molten salts in both nuclear and non-nuclear systems, measuring important thermophysical properties of specific salt mixtures becomes critical in understanding salt performance and behavior. One of the more basic and significant thermophysical properties of a given salt system is density as a function of temperature. With this in mind, this work aims to present and layout a novel approach to measuring densities of molten salt systems using neutron radiography. This work was performed on Flight Path 5 at the Los Alamos Neutron Science Center at Los Alamos National Laboratory. In order to benchmark this initial work, three salt mixtures were measured, NaCl, LiCl (58.2 mol%) + KCl (41.8 mol%), and MgCl2 (32 mol%) + KCl (68 mol%). Resulting densities as a function of temperature for each sample from this work were then compared to previous works employing traditional techniques. Results from this work match well with previous literature values for all salt mixtures measured, establishing that neutron radiography is a viable technique to measure density as a function of temperature in molten salt systems. Finally, advantages of using neutron radiography over other methods are discussed and future work in improving this technique is covered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available