4.8 Review

Interface chemistry of two-dimensional heterostructures - fundamentals to applications

Journal

CHEMICAL SOCIETY REVIEWS
Volume 50, Issue 7, Pages 4684-4729

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0cs01070g

Keywords

-

Funding

  1. RMIT Vice-Chancellor Fellowship, RMIT University, Australia
  2. Commonwealth Government of Australia
  3. McKenzie Fellowship, University of Melbourne, Australia
  4. Australian Research Council Centre of Excellence FLEET [CE170100039]
  5. CSIRO, Australia
  6. HEC, Pakistan-RMIT University, Australia

Ask authors/readers for more resources

This review discusses the recent progress in the field of two-dimensional heterostructures (2D HSs), focusing on the fundamentals and chemistry of heterointerfaces based on van der Waals and covalent interactions. It also addresses challenges in scalable synthesis and introduces characterization techniques for revealing the heterointerface formation, chemistry, and nature. Additionally, it highlights the role of 2D HSs in various emerging applications such as high-power batteries, bifunctional catalysts, electronics, and sensors.
Two-dimensional heterostructures (2D HSs) have emerged as a new class of materials where dissimilar 2D materials are combined to synergise their advantages and alleviate shortcomings. Such a combination of dissimilar components into 2D HSs offers fascinating properties and intriguing functionalities attributed to the newly formed heterointerface of constituent components. Understanding the nature of the surface and the complex heterointerface of HSs at the atomic level is crucial for realising the desired properties, designing innovative 2D HSs, and ultimately unlocking their full potential for practical applications. Therefore, this review provides the recent progress in the field of 2D HSs with a focus on the discussion of the fundamentals and the chemistry of heterointerfaces based on van der Waals (vdW) and covalent interactions. It also explains the challenges associated with the scalable synthesis and introduces possible methodologies to produce large quantities with good control over the heterointerface. Subsequently, it highlights the specialised characterisation techniques to reveal the heterointerface formation, chemistry and nature. Afterwards, we give an overview of the role of 2D HSs in various emerging applications, particularly in high-power batteries, bifunctional catalysts, electronics, and sensors. In the end, we present conclusions with the possible solutions to the associated challenges with the heterointerfaces and potential opportunities that can be adopted for innovative applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available