4.7 Article

Inhomogeneous confining-deconfining phases in rotating plasmas

Journal

PHYSICAL REVIEW D
Volume 103, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.103.054027

Keywords

-

Funding

  1. Ministry of Science and Higher Education of Russia [0657-2020-0015]

Ask authors/readers for more resources

In this paper, the effects of rotation on the confining properties of gauge theories, with a focus on compact electrodynamics in two spatial dimensions, are discussed. It is shown that rotation leads to a deconfining transition at a certain distance from the rotation axis, creating a mixed inhomogeneous phase in a uniformly rotating confining system. This has implications for the phase diagram of QCD, suggesting an inverse hadronization effect for uniformly rotating quark-gluon plasma.
We discuss the effects of rotation on confining properties of gauge theories focusing on compact electrodynamics in two spatial dimensions as an analytically tractable model. We show that at finite temperature, the rotation leads to a deconfining transition starting from a certain distance from the rotation axis. A uniformly rotating confining system possesses, in addition to the usual confinement and deconfinement phases, a mixed inhomogeneous phase which hosts spatially separated confinement and deconfinement regions. The phase diagram thus has two different deconfining temperatures. The first deconfining temperature can be made arbitrarily low by sufficiently rapid rotation while the second deconfining temperature is largely unaffected by the rotation. Implications of our results for the phase diagram of QCD are presented. We point out that uniformly rotating quark-gluon plasma should therefore experience an inverse hadronization effect when the hadronization starts from the core of the rotating plasma rather than from its boundary.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available