4.6 Article

Opposing roles of plant laticifer cells in the resistance to insect herbivores and fungal pathogens

Journal

PLANT COMMUNICATIONS
Volume 2, Issue 3, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.xplc.2020.100112

Keywords

Euphorbia lathyris; disease resistance; disease susceptibility; plant defense

Funding

  1. Agencia Estatal de Investigacion (AEI), Spain [RTI2018-098501-B-I00]

Ask authors/readers for more resources

The article discusses the importance of laticifer cells in plant physiological adaptation and resistance, including their roles in defending against insects and fungi.
More than 12,000 plant species (ca. 10% of flowering plants) exude latex when their tissues are injured. Latex is produced and stored in specialized cells named laticifers''. Laticifers form a tubing system composed of rows of elongated cells that branch and create an internal network encompassing the entire plant. Laticifers constitute a recent evolutionary achievement in ecophysiological adaptation to specific natural environments; however, their fitness benefit to the plant still remains to be proven. The identification of Euphorbia lathyris mutants (pil mutants) deficient in laticifer cells or latex metabolism, and therefore compromised in latex production, allowed us to test the importance of laticifers in pest resistance. We provided genetic evidence indicating that laticifers represent a cellular adaptation for an essential defense strategy to fend off arthropod herbivores with different feeding habits, such as Spodoptera exigua and Tetranychus urticae. In marked contrast, we also discovered that a lack of laticifer cells causes complete resistance to the fungal pathogen Botrytis cinerea. Thereafter, a latex-derived factor required for conidia germination on the leaf surface was identified. This factor promoted disease susceptibility enhancement even in the non-latex-bearing plant Arabidopsis. We speculate on the role of laticifers in the coevolutionary arms race between plants and their enemies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available