4.6 Article

Metal- and halide-free, solid-state polymeric water vapor sorbents for efficient water-sorption-driven cooling and atmospheric water harvesting

Journal

MATERIALS HORIZONS
Volume 8, Issue 5, Pages 1518-1527

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0mh02051f

Keywords

-

Ask authors/readers for more resources

The study introduces a novel type of highly efficient and benign polymeric sorbent that is metal- and halide-free, with an expandable solid state when wet, showing reduced corrosivity and improved water sorption capacity. The acetate paired hydrogel exhibits exceptional water sorption capacity among hygroscopic polymers, even though crosslinked, and is utilized in water-sorption-driven cooling and atmospheric water harvesting applications, resulting in improved COP and high freshwater production rate. This work inspires further research in developing advanced water sorbents and expanding the application of water-sorption-based processes in the water-energy nexus.
Metal- and halide-free, solid-state water vapor sorbents are highly desirable for water-sorption-based applications, because most of the solid sorbents suffer from low water sorption capacity caused by their rigid porosity, while the liquid sorbents are limited by their fluidity and strong corrosivity, which is caused by the halide ions. Herein, we report a novel type of highly efficient and benign polymeric sorbent, which contains no metal or halide, and has an expandable solid state when wet. A group of sorbents are synthesized by polymerizing and crosslinking the metal-free quaternary ammonium monomers followed by an ion-exchange process to replace chloride anions with benign-anions, including acetate, oxalate, and citrate. They show significantly reduced corrosivity and improved water sorption capacity. Importantly, the water sorption capacity of the acetate paired hydrogel is among the best of the literature reported hygroscopic polymers in their pure form, even though the hydrogel is crosslinked. The hydrogel-based sorbents are further used for water-sorption-driven cooling and atmospheric water harvesting applications, which show improved coefficient of performance (COP) and high freshwater production rate, respectively. The results of this work would inspire more research interest in developing better water sorbents and potentially broaden the application horizon of water-sorption-based processes towards the water-energy nexus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available