4.6 Article

Insights into the climate-driven evolution of gas hydrate-bearing permafrost sediments: implications for prediction of environmental impacts and security of energy in cold regions

Journal

RSC ADVANCES
Volume 11, Issue 24, Pages 14334-14346

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ra01518d

Keywords

-

Funding

  1. Heriot-Watt University

Ask authors/readers for more resources

This study investigates the evolution of gas hydrate-bearing permafrost sediments against environmental temperature change. Experimental results reveal the influence of complex pore-scale factors on elastic wave velocities and effective thermal conductivity (ETC). The research emphasizes the importance of distinguishing between ice and gas hydrates in frozen sediments for accurate quantification of natural gas hydrate as a sustainable energy resource.
The present study investigates the evolution of gas hydrate-bearing permafrost sediments against the environmental temperature change. The elastic wave velocities and effective thermal conductivity (ETC) of simulated gas hydrate-bearing sediment samples were measured at a typical range of temperature in permafrost and wide range of hydrate saturation. The experimental results reveal the influence of several complex and interdependent pore-scale factors on the elastic wave velocities and ETC. It was observed that the geophysical and geothermal properties of the system are essentially governed by the thermal state, saturation and more significantly, pore-scale distribution of the co-existing phases. In particular, unfrozen water content substantially controls the heat transfer at sub-zero temperatures close to the freezing point. A conceptual pore-scale model was also proposed to describe the pore-scale distribution of each phase in a typical gas hydrate-bearing permafrost sediment. This study underpins necessity of distinguishing ice from gas hydrates in frozen sediments, and its outcome is essential to be considered not only for development of large-scale permafrost monitoring systems, bus also accurate quantification of natural gas hydrate as a potential sustainable energy resource in cold regions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available