4.6 Review

The reverse water gas shift reaction: a process systems engineering perspective

Journal

REACTION CHEMISTRY & ENGINEERING
Volume 6, Issue 6, Pages 954-976

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0re00478b

Keywords

-

Ask authors/readers for more resources

The catalytic reduction of CO2 into value-added products is a significant solution for mitigating global warming and energy crises, with the RWGS reaction playing a key role. Despite various efforts, there is still a lack of understanding of the fundamental phenomena in the process.
The catalytic reduction of CO2 into value-added products has been considered a compelling solution for alleviating global warming and energy crises. The reverse water gas shift (RWGS) reaction plays a pivotal role among the various CO2 utilization approaches, due to the fact that it produces syngas, the building block of numerous conversion processes. Although a lot of work has been carried out towards the development of a RWGS process, ranging from efficient catalytic systems to reactor units, and even pilot scale processes, there is still a lack of understanding of the fundamental phenomena that take place at the various levels and scales of the process. This contribution presents the main solutions and remaining challenges for a structured, trans- and multidisciplinary framework in which catalysis engineering and process systems engineering can work together to incorporate understanding and methods from both sides, to accelerate the investigation, creation and operation of an efficient industrial CO2 conversion process based on the RWGS reaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available