4.7 Article

Comprehensive bathymetry and intertidal topography of the Amazon estuary

Journal

EARTH SYSTEM SCIENCE DATA
Volume 13, Issue 5, Pages 2275-2291

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/essd-13-2275-2021

Keywords

-

Funding

  1. Horizon 2020 (EOSC-synergy) [857647]

Ask authors/readers for more resources

This study presents a high-resolution dataset of the topography and bathymetry of the Amazon River estuary, utilizing spaceborne remote sensing data and processed river depth data. The dataset has been extensively validated, showing high vertical accuracy, and can promote the usage of database in studies such as hydrodynamic modeling and geomorphological assessments.
The characterization of estuarine hydrodynamics primarily depends on knowledge of the bathymetry and topography. Here, we present the first comprehensive, high-resolution dataset of the topography and bathymetry of the Amazon River estuary, the world's largest estuary. Our product is based on an innovative approach combining spaceborne remote sensing data, an extensive and processed river depth dataset, and auxiliary data. Our goal with this mapping is to promote the database usage in studies that require this information, such as hydrodynamic modeling or geomorphological assessments. Our twofold approach considered 500 000 sounding points digitized from 19 nautical charts for bathymetry estimation, in conjunction with a state-of-the-art topographic dataset based on remote sensing, encompassing intertidal flats, riverbanks, and adjacent floodplains. Finally, our estimate can be accessed in a unified 30 m resolution regular grid referenced to the Earth Gravitational Model 2008 (EGM08), complemented both landward and seaward by land (Multi-Error-Removed Improved-Terrain digital elevation model, MERIT DEM) and ocean (General Bathymetric Chart of the Oceans version 2020, GEBCO_2020) topographic data. Extensive validation against independent and spatially distributed data, from an airborne lidar survey, from ICESat-2 altimetric satellite data, and from various in situ surveys, shows a typical vertical accuracy of 7.2m (riverbed) and 1.2 m (non-vegetated intertidal floodplains). The dataset is available at https://doi.org/10.17632/3g6b5ynrdb.2 (Fassoni-Andrade et al., 2021).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available