4.5 Article

Multiple imputation of missing data in multilevel models with the R package mdmb: a flexible sequential modeling approach

Journal

BEHAVIOR RESEARCH METHODS
Volume 53, Issue 6, Pages 2631-2649

Publisher

SPRINGER
DOI: 10.3758/s13428-020-01530-0

Keywords

Multilevel analysis; Interaction effects; Missing data; Multiple imputation

Funding

  1. Projekt DEAL

Ask authors/readers for more resources

This study introduces a sequential modeling approach based on Bayesian estimation techniques for handling missing data in multilevel models involving nonlinear effects. By decomposing the joint distribution of data and generating imputations compatible with substantive analysis models, this approach provides a method for effectively addressing missing data in multilevel models.
Multilevel models often include nonlinear effects, such as random slopes or interaction effects. The estimation of these models can be difficult when the underlying variables contain missing data. Although several methods for handling missing data such as multiple imputation (MI) can be used with multilevel data, conventional methods for multilevel MI often do not properly take the nonlinear associations between the variables into account. In the present paper, we propose a sequential modeling approach based on Bayesian estimation techniques that can be used to handle missing data in a variety of multilevel models that involve nonlinear effects. The main idea of this approach is to decompose the joint distribution of the data into several parts that correspond to the outcome and explanatory variables in the intended analysis, thus generating imputations in a manner that is compatible with the substantive analysis model. In three simulation studies, we evaluate the sequential modeling approach and compare it with conventional as well as other substantive-model-compatible approaches to multilevel MI. We implemented the sequential modeling approach in the R package mdmb and provide a worked example to illustrate its application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available