4.6 Review

Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 9, Issue 23, Pages 13459-13470

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ta01108a

Keywords

-

Funding

  1. Natural Science Foundation of the Jiangsu Higher Education Institutions of China [19KJB150019, 20KJB150043]
  2. Youth Science and Technology Talents Enrollment Project of the Jiangsu Association of Science and Technology

Ask authors/readers for more resources

Electrochemical water splitting holds promise for producing high-density and green hydrogen, but the slow H2O dissociation process hinders industrial scale applications due to low H2O adsorption on catalyst surfaces. Efforts in exploring efficient approaches to fabricate electrocatalysts with appropriate H2O adsorption include defect engineering, interface engineering, and morphology design. Noble metal doping, particularly with metals like Ru, Rh, and Ir, plays a crucial role in optimizing the adsorption of reaction intermediates on catalyst surfaces, and has attracted significant research interest. This review highlights recent examples and mechanisms of noble metal doping in boosting water splitting electrocatalysis, along with challenges and future outlooks for practical applications.
Electrochemical water splitting has a promising future in producing high-density and green hydrogen, however, the sluggish H2O dissociation process, due to the low H2O adsorption on the catalyst surface, greatly hinders the industrial electrochemical water splitting on a large scale. Therefore, intensive efforts have been devoted to the exploration of efficient approaches for fabricating highly efficient electrocatalysts with appropriate H2O adsorption, such as defect engineering, interface engineering, and morphology design. Among them, metal doping, particularly noble metal (Ru, Rh, and Ir) doping, is essential to optimize the adsorption of reaction intermediates on the surface of catalysts, and has thus attracted increasing research interest. In order to uncover the significant role of noble metal doping in boosting water splitting electrocatalysis, this minireview showcases the most recent examples towards this endeavor, and begins by illustrating the mechanisms for water splitting and several advanced approaches for realizing noble metal doping. In the main text, we have also specifically highlighted the influences of noble metal doping on the electrocatalytic performance. Finally, some challenges and future outlooks are also presented to offer guidance for practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available