4.6 Article

A crystalline/amorphous CoP@CoB hierarchical core-shell nanorod array for enhanced hydrogen evolution

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Corrosion Engineering on Iron Foam toward Efficiently Electrocatalytic Overall Water Splitting Powered by Sustainable Energy

Zexing Wu et al.

Summary: This work presents a facile and industrially compatible corrosion strategy for the rapid synthesis of amorphous RuO2-decorated FeOOH nanosheets. The FF-Na-Ru electrode is superhydrophilic and aerophobic, ensuring intimate contact with the electrolyte and facilitating the escape of gas bubbles during the electrocatalytic process. Strong electronic interactions between RuO2 and FeOOH dramatically improve the electrochemical interfacial properties, leading to excellent catalytic activity towards the hydrogen evolution reaction and overall water-splitting.

ADVANCED FUNCTIONAL MATERIALS (2021)

Review Chemistry, Physical

Rational catalyst design for oxygen evolution under acidic conditions: strategies toward enhanced electrocatalytic performance

Yu Zhang et al.

Summary: Electrochemical water splitting under acidic conditions can convert renewable energy into hydrogen, but designing high-performance acidic OER electrocatalysts remains a challenge. Strategies such as defect engineering, structural manipulation, atomic arrangement tailoring, and interface regulation are crucial for developing efficient OER catalysts.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Materials Science, Multidisciplinary

Progress and Challenge of Amorphous Catalysts for Electrochemical Water Splitting

Yao Zhou et al.

Summary: Electrochemical water splitting is a promising technology for sustainable energy supply, with amorphous electrocatalysts gaining attention for their structural flexibility and rich defects. The use of amorphous catalyst materials offers opportunities for enhancing active sites, but characterization of local geometry and improving electrochemical stability remain challenges for future development.

ACS MATERIALS LETTERS (2021)

Article Chemistry, Multidisciplinary

Boron-Induced Electronic-Structure Reformation of CoP Nanoparticles Drives Enhanced pH-Universal Hydrogen Evolution

Erping Cao et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Review Chemistry, Multidisciplinary

Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony

Sengeni Anantharaj et al.

SMALL (2020)

Article Chemistry, Multidisciplinary

Fabrication of Hollow CoP/TiOx Heterostructures for Enhanced Oxygen Evolution Reaction

Zibin Liang et al.

SMALL (2020)

Article Chemistry, Multidisciplinary

Amorphous versus Crystalline in Water Oxidation Catalysis: A Case Study of NiFe Alloy

Weizheng Cai et al.

NANO LETTERS (2020)

Article Chemistry, Physical

Amorphous NiWO4 nanoparticles boosting the alkaline hydrogen evolution performance of Ni3S2 electrocatalysts

Senchuan Huang et al.

APPLIED CATALYSIS B-ENVIRONMENTAL (2020)

Article Chemistry, Physical

A crystalline-amorphous Ni-Ni(OH)2 core-shell catalyst for the alkaline hydrogen evolution reaction

Jing Hu et al.

JOURNAL OF MATERIALS CHEMISTRY A (2020)

Review Chemistry, Multidisciplinary

Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2

Sonali Das et al.

CHEMICAL SOCIETY REVIEWS (2020)

Review Chemistry, Multidisciplinary

Metallic nanostructures with low dimensionality for electrochemical water splitting

Leigang Li et al.

CHEMICAL SOCIETY REVIEWS (2020)

Article Chemistry, Physical

Crystalline Ni(OH)2/Amorphous NiMoOx Mixed-Catalyst with Pt-Like Performance for Hydrogen Production

Zihao Dong et al.

ADVANCED ENERGY MATERIALS (2019)

Review Chemistry, Multidisciplinary

Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting

Jungang Hou et al.

ADVANCED FUNCTIONAL MATERIALS (2019)

Article Chemistry, Multidisciplinary

In Situ Grown Epitaxial Heterojunction Exhibits High-Performance Electrocatalytic Water Splitting

Changrong Zhu et al.

ADVANCED MATERIALS (2018)

Article Chemistry, Multidisciplinary

Energy-Saving Electrolytic Hydrogen Generation: Ni2P Nanoarray as a High-Performance Non-Noble-Metal Electrocatalyst

Chun Tang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2017)

Review Chemistry, Multidisciplinary

Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting

Isolda Roger et al.

NATURE REVIEWS CHEMISTRY (2017)

Article Materials Science, Multidisciplinary

Self-supported electrocatalysts for advanced energy conversion processes

Tian Yi Ma et al.

MATERIALS TODAY (2016)

Article Chemistry, Physical

Ni2P-CoP hybrid nanosheet arrays supported on carbon cloth as an efficient flexible cathode for hydrogen evolution

An-Liang Wang et al.

JOURNAL OF MATERIALS CHEMISTRY A (2016)

Review Chemistry, Multidisciplinary

Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions

Yan Jiao et al.

CHEMICAL SOCIETY REVIEWS (2015)

Article Chemistry, Multidisciplinary

In situ Cobalt-Cobalt Oxide/N-Doped Carbon Hybrids As Superior Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution

Haiyan Jin et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2015)

Article Chemistry, Multidisciplinary

High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS2) Micro- and Nanostructures

Matthew S. Faber et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2014)

Article Multidisciplinary Sciences

Hydrogen evolution by a metal-free electrocatalyst

Yao Zheng et al.

NATURE COMMUNICATIONS (2014)

Review Chemistry, Multidisciplinary

Solar Water Splitting Cells

Michael G. Walter et al.

CHEMICAL REVIEWS (2010)