4.6 Article

Stabilization of the Ferroelectric Phase in Epitaxial Hf1-xZrxO2 Enabling Coexistence of Ferroelectric and Enhanced Piezoelectric Properties

Journal

ACS APPLIED ELECTRONIC MATERIALS
Volume 3, Issue 5, Pages 2106-2113

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaelm.1c00122

Keywords

hafnium oxide; ferroelectric; thin films; epitaxial oxides; ZrO2; HfO2

Funding

  1. Spanish Ministerio de Ciencia e Innovacion, through the Severo Ochoa FUNFUTURE [CEX2019-000917-S]
  2. AEI/FEDER, EU [MAT2017-85232-R, PID2019-107727RB-I00]
  3. Generalitat de Catalunya [PID2020-112548RB-I00, MAT2015-73839-JIN, 2017 SGR 1377]
  4. French National Research Agency (ANR) through the project MITO [ANR-17-CE05-0018-01]
  5. French National Research Agency (ANR) through the project LILIT [NR-16-CE24-0022]
  6. French National Research Agency (ANR) through the project DIAMWAFEL [ANR-15-CE08-0034-02]
  7. 2020 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation
  8. China Scholarship Council (CSC) [201807000104, 201906050014]
  9. Agence Nationale de la Recherche (ANR) [ANR-17-CE05-0018] Funding Source: Agence Nationale de la Recherche (ANR)

Ask authors/readers for more resources

Systematic studies on polycrystalline Hf1-xZrxO2 films reveal that the films exhibit different structural types and properties of ferroelectricity, insulation, and piezoelectricity depending on the Zr content. Epitaxial growth allows for the stabilization of the ferroelectric phase in a whole range of Zr content.
Systematic studies on polycrystalline Hf1-xZrxO2 films with varying Zr contents show that HfO2 films are paraelectric (monoclinic). If the Zr content is increased, films become ferroelectric (orthorhombic) and then antiferroelectric (tetragonal). HfO2 shows very good insulating properties and it is used in metal-oxide-semiconductor field-effect devices, while ZrO2 shows good piezoelectric properties, but it is antiferroelectric. In between, Hf0.5Zr0.5O2 shows good ferroelectric properties at the expense of poorer insulating and piezoelectric properties than HfO2 and ZrO2, respectively. Here, we explore the ferroelectric, insulating, and piezoelectric properties of a series of epitaxial films of Hf1-xZrxO2 with different compositions. We show that epitaxial growth permits the stabilization of the ferroelectric phase in a whole range of Zr content (from x = 0 to x = 1). In epitaxial ZrO2 films, ferroelectricity coexists with better piezoelectric and insulating properties than Hf0.5Zr0.5O2, and in HfO2 epitaxial films, ferroelectricity coexists with better insulating properties than Hf0.5Zr0.5O2. For the case of ZrO2 films, large electroresistance is also observed. In both cases, the ferroelectric endurance is poorer than that for Hf0.5Zr0.5O2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available