4.8 Article

A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li-S batteries

Journal

INFOMAT
Volume 3, Issue 7, Pages 790-803

Publisher

WILEY
DOI: 10.1002/inf2.12214

Keywords

electrocatalysis; electrospinning; interface engineering; nanofiber; vertical graphene

Funding

  1. National Natural Science Foundation of China [U2004172, 51972287, 51502269]
  2. Natural Science Foundation of Henan Province [202300410368]
  3. Foundation for University Key Teachers of Henan Province [2020GGJS009]

Ask authors/readers for more resources

This study developed a flexible Li-S battery architecture based on electrocatalyzed cathodes, which successfully improved the conversion kinetics between sulfur species by enhancing both ion and electron transportation as well as affinity to polysulfides, leading to homogeneous deposition of Li2S in the catalyzed cathodes. The highly active electro-electrocatalysts-based cells exhibited remarkable rate capability and high specific capacity, even under ultra-high sulfur loading and low electrolyte/sulfur ratio conditions.
The realistic application of lithium-sulfur (Li-S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li2S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li-S battery architecture based on electrocatalyzed cathodes made of interfacial engineered TiC nanofibers and in situ grown vertical graphene are developed. Integrated 1D/2D heterostructured electrocatalysts are realized to enable highly improved Li+ and electron transportation together with significantly enhanced affinity to LiPS, which effectively accelerate the conversion kinetics between sulfur species, and thus induce homogeneous deposition of Li2S in the catalyzed cathodes. Consequently, highly active electro-electrocatalysts-based cells exhibit remarkable rate capability at 2C with a high specific capacity of 971 mAh g(-1). Even at ultra-high sulfur loading and low E/S ratio, the battery still delivers a high areal capacity of 9.1 mAh cm(-2), with a flexible pouch cell being demonstrated to power a LED array at different bending angles with a high capacity over 100 cycles. This work puts forward a novel pathway for the rational design of effective nanofiber electrocatalysts for cathodes of high-performance Li-S batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available