4.6 Article

The effect of Weber number, droplet sizes and wall roughness on crisis of droplet boiling

Journal

EXPERIMENTAL THERMAL AND FLUID SCIENCE
Volume 84, Issue -, Pages 190-198

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.expthermflusci.2017.02.014

Keywords

Evaporation; Heat transfer crisis; We number; Transitional boiling

Funding

  1. Russian Science Foundation [15-19-10025]
  2. Russian Science Foundation [15-19-10025] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

Various boiling modes in a wide range of droplet sizes and wall temperature under droplet T-w were studied experimentally. Dynamics of droplets boiling is determined not only by Tw, Weber number We, wall roughness but also by the droplet shape. Application of two different methods of forming a suspended spheroid (ellipsoid) for We = 0 and We > 1 allowed separate investigation of the influence of the key factors on evaporation. To form the spheroids with We = 0 (no droplet fall, V-0= 0 m/s), the limiting rings were used. For We = 0, an increase in pressure inside a droplet and its disintegration were excluded because there was no fall. An increase in roughness at We = 0 promotes an increase in Leidenfrost temperature T-L, and conversely, at We > 1, high roughness leads to a decrease in TL due to the pressure drop in liquid and decay of a spheroid. With the growth in the initial diameter of a suspended drop at We = 0, temperature TL increases significantly and approaches the value of TL at pool boiling in water. The lower value of this temperature is also consistent with theoretical predictions. Experimental data demonstrate the importance of taking into account the size maldistribution of droplets for the correct prediction of the uneven temperature field on the heated wall surface. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available