4.5 Article

Hydrotreatment of lignin dimers over NiMoS-USY: effect of silica/alumina ratio

Journal

SUSTAINABLE ENERGY & FUELS
Volume 5, Issue 13, Pages 3445-3457

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1se00412c

Keywords

-

Funding

  1. Swedish Energy Agency [2016-08330]
  2. Formas [2017-01392]
  3. Swedish Research Council [2017-01392] Funding Source: Swedish Research Council
  4. Formas [2017-01392] Funding Source: Formas

Ask authors/readers for more resources

The study found that NiMoY30 exhibited the highest hydrogenolysis activity for etheric C-O bonds, despite NiMoY12 showing a higher initial cleavage rate. Additionally, NiMoY30 showed good hydrodeoxygenation and cracking reactions, resulting in a higher yield of deoxygenated products. Even with lower acidity, NiMoY80 was able to rapidly cleave the methylene-linked C-C dimer. Overall, the balance of acidity and pore accessibility in NiMoY30 led to effective breaking of recalcitrant linkages in lignin, producing a liquid transportation fuel rich in hydrocarbons.
Sulfides of NiMo over a series of commercial ultra-stable Y zeolites were studied in an autoclave reactor to elucidate the effect of silica/alumina ratio (SAR = 12, 30, and 80) on the cleavage of etheric C-O (beta-O-4) and C-C (both sp(3)-sp(2) and sp(2)-sp(2)) linkages present in native/technical lignin and lignin derived bio-oils. 2-Phenethyl phenyl ether (PPE), 4,4-dihydroxydiphenylmethane (DHDPM), and 2-phenylphenol, (2PP) were examined as model dimers at 345 degrees C and 50 bar of total pressure using dodecane as the solvent. The etheric C-O hydrogenolysis activity was found to be in the order NiMoY30 > NiMoY12 > NiMoY80, despite a high initial rate of C-O cleavage over NiMoY12 owing to its high acid density. A high degree of hydrodeoxygenation (HDO) and hydrocracking reactions were observed with NiMoY30 yielding >80% of deoxygenated products of which similar to 58% are benzene, toluene, and ethylbenzenes. A similar experiment with DHDPM showed the rapid cleavage of the methylene-linked C-C dimer (sp(3)-sp(2)) to phenols and cresols even with the low acid density (high SAR) catalyst, NiMoY80. Direct hydrocracking of the recalcitrant 5-5 ' linkage in 2PP is very slow, however, it cleaved via a cascade of HDO, ring-hydrogenation, and hydrocracking reactions. A high degree of hydrogenolysis and hydrocracking occurs over NiMoY30 due to suitable balance between acidity and pore accessibility, enhanced proximity between acidic and deoxygenation sites leading to a slightly higher dispersion of Ni promoted MoS2 crystallites. Overall, the product spectrum consisted of a high yield of deoxygenated products. The carbon content on the recovered catalyst was in the range of 3-7 wt%. These results pave the way for effective catalysts to break recalcitrant linkages present in lignin to obtain a hydrocarbon-rich liquid transportation fuel. An experiment with Kraft lignin over NiMoY30 shows good selectivity for deoxygenated aromatics and cycloalkanes in the liquid phase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available