4.6 Article

A non-enzymatic disposable electrochemical sensor based on surface-modified screen-printed electrode CuO-IL/rGO nanocomposite for a single-step determination of glucose in human urine and electrolyte drinks

Journal

ANALYTICAL METHODS
Volume 13, Issue 25, Pages 2796-2803

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ay00676b

Keywords

-

Funding

  1. Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University
  2. National Research Council of Thailand [NRCT5-TRG63001-02]

Ask authors/readers for more resources

A non-enzymatic disposable electrochemical sensor was developed to determine glucose levels in human urine and electrolyte drinks. It was combined with an automated sample pretreatment paper-based device to eliminate the need for additional sample preparation steps. The sensor showed rapid current response and good linearity using the CuO-IL/rGO nanocomposite modified screen-printed carbon electrode.
A non-enzymatic disposable electrochemical sensor coupled with an automated sample pretreatment paper-based device was developed to avoid an additional sample preparation step for glucose determination in human urine and electrolyte drinks. The automated sample pretreatment paper-based device was successfully fabricated by the simple coating of a strong alkaline solution on a patterned wax paper, and then attached on an electrochemical sensor. The nanocomposite of copper oxide nanoparticles, ionic liquid and reduced graphene oxide (CuO-IL/rGO) modified on the screen-printed carbon electrode (SPCE) was created and used as a non-enzymatic electrochemical glucose sensor. The presence of the CuO-IL/rGO nanocomposite on the screen-printed electrode surface was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction spectroscopy (XRD). Under optimal conditions, glucose was measured by dropping 100 mu L sample solution on the device and detected via chronoamperometry (CA) using a smartphone potentiostat controlled by Android app., providing a rapid current response within 20 s and linearity in a range of 0.03-7.0 mM with a limit of detection (LOD) of 0.14 mu M. Furthermore, this developed device was successfully applied for determining glucose levels in human urine and electrolyte drinks, exporting satisfying results correlated with a commercial enzymatic glucose biosensor and labeled values of the commercial products. Therefore, this device could be an alternative device for a non-enzymatic glucose sensor with single-step sample loading, allowing for real-time analysis, low cost, portability, disposability, and on-field measurement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available