4.8 Article

Lithium ion battery recycling using high-intensity ultrasonication

Journal

GREEN CHEMISTRY
Volume 23, Issue 13, Pages 4710-4715

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1gc01623g

Keywords

-

Funding

  1. Faraday Institution [FIRG005, FIRG006]

Ask authors/readers for more resources

Decarbonisation of energy will heavily rely on lithium ion batteries for automotive transportation, creating a need for efficient recycling processes. This study introduces a rapid delamination method using high powered ultrasound, which significantly increases material processing efficiency and purity for potential recycling into new electrodes.
Decarbonisation of energy will rely heavily, at least initially, on the use of lithium ion batteries for automotive transportation. The projected volumes of batteries necessitate the development of fast and efficient recycling protocols. Current methods are based on either hydrometallurgical or pyrometallurgical methods. The development of efficient separation techniques of waste lithium ion batteries into processable waste streams is needed to reduce material loss during recycling. Here we show a rapid and simple method for removing the active material from composite electrodes using high powered ultrasound in a continuous flow process. Cavitation at the electrode interface enables rapid and selective breaking of the adhesive bond, enabling an electrode to be delaminated in a matter of seconds. This enables the amount of material that can be processed in a given time and volume to be increased by a factor of approximately 100. It also produces a material of higher purity and value that can potentially be directly recycled into new electrodes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available