4.3 Article

MicroRNA-200a represses myocardial infarction-related cell death and inflammation by targeting the Keap1/Nrf2 and β-catenin pathways

Journal

HELLENIC JOURNAL OF CARDIOLOGY
Volume 62, Issue 2, Pages 139-148

Publisher

HELLENIC CARDIOLOGICAL SOC
DOI: 10.1016/j.hjc.2020.10.006

Keywords

Myocardial infarction; MicroRNA-200a; Keap1/Nrf2; beta-catenin; Apoptosis

Ask authors/readers for more resources

The study demonstrated that miR-200a plays a protective role in MI treatment by regulating the Keap1/Nrf2 and beta-catenin signaling pathways to protect cardiomyocytes from death.
Background: Acute myocardial infarction (MI) is a main cause of emergency death in the world. MicroRNAs (miRs/miRNAs) are a series of small non-coding RNA molecules, which regulate cardiovascular disorders that involve MI. In this study, we explored the function of miR-200a in MI treatment. Methods: We observed down-regulation of miR-200a levels and up-regulation of Keap1 and beta-catenin levels in H2O2-treated newborn murine ventricular cardiomyocytes (NMVCs) and the infarcted heart tissues of MI mouse models, compared to the non-treated NMVCs and normal heart tissues of healthy mice. Results: CCK-8 and colony formation assays indicated the reduction in NMVC vitality due to H2O2 treatment and the recovery of cell vitality due to miR-200a overexpression, respectively. Flow cytometry with Annexin and PI staining indicated the inhibition of H2O2-triggered cell apoptosis through ectopically expressed miR-200a. Western blotting and ELISA analyses that detected pro-inflammatory cell factors [interleukin (IL)-1 beta, IL-6, and tumor necrosis factor (TNF)-alpha] confirmed that miR-200a prevented H2O2-induced NMVC inflammation. Moreover, miR-200a inhibited up-regulation of Keap1 and beta-catenin expression in H2O2-treated NMVCs by directly binding with the 30-UTR regions of both Keap1 and beta-catenin. Furthermore, overexpression of Keap1 and beta-cateninin in H2O2-treated NMVCs with recovered miR-200a elevated inflammation and apoptosis, respectively. Conclusion: The results showed that miR-200a expression was inhibited in murine cardiomyocytes due to H2O2 stress in MI cardiac tissues and overexpressed miR-200a could protect the cells from death by regulating the Keap1/Nrf2 and beta-catenin signal transduction pathways. (C) 2020 Hellenic Society of Cardiology. Publishing services by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available