4.7 Article

Inclusive electron scattering and the GENIE neutrino event generator

Journal

PHYSICAL REVIEW D
Volume 103, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.103.113003

Keywords

-

Funding

  1. U.S. Department of Energy [DE-FG02-96ER40960, DE-SC0007914, DE-SC0020240]
  2. CEA, France
  3. CNRS/IN2P3, France
  4. P2IO, France
  5. European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant [839481]
  6. Spanish Ministerio de Economia y Competitividad [FIS2017-88410-P]
  7. ERDF (European Regional Development Fund) [FIS2017-88410-P]
  8. Junta de Andalucia [FQM160, SOMM17/6105/UGR]
  9. Visiting Scholars Award Program of the Universities Research Association
  10. Fermi Research Alliance, LLC (FRA) [DE-AC02-07CH11359]
  11. Marie Curie Actions (MSCA) [839481] Funding Source: Marie Curie Actions (MSCA)
  12. U.S. Department of Energy (DOE) [DE-SC0020240, DE-FG02-96ER40960] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

Testing neutrino event generators using high-precision inclusive electron-scattering data overcomes experimental difficulties and provides adequate description of data in the QE- and MEC-dominated lower energy transfer regime, especially when using the SuSAv2 models. However, higher energy transfer interactions, dominated by resonance production, are still not well modeled by e-GENIE.
The extraction of neutrino mixing parameters from accelerator-based neutrino-oscillation experiments relies on proper modeling of neutrino-nucleus scattering processes using neutrino interaction event generators. Experimental tests of these generators are difficult due to the broad range of neutrino energies produced in accelerator-based beams and the low statistics of current experiments. Here we overcome these difficulties by exploiting the similarity of neutrino and electron interactions with nuclei to test neutrino event generators using high-precision inclusive electron-scattering data. To this end, we revised the electron-scattering mode of the GENIE event generator (e-GENIE) to include electron-nucleus bremsstrahlung radiation effects and to use, when relevant, the exact same physics models and model parameters, as the standard neutrino-scattering version. We also implemented new models for quasielastic (QE) scattering and meson exchange currents (MECs) based on the theory-inspired super scaling approach SuSAv2. Comparing the new e-GENIE predictions with inclusive electron-scattering data, we find an overall adequate description of the data in the QE- and MEC-dominated lower energy transfer regime, especially when using the SuSAv2 models. Higher energy transfer interactions, which are dominated by resonance production, are still not well modeled by e-GENIE.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available