4.7 Article

Facile synthesis of GalNAc monomers and block polycations for hepatocyte gene delivery

Journal

POLYMER CHEMISTRY
Volume 12, Issue 28, Pages 4063-4071

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1py00250c

Keywords

-

Ask authors/readers for more resources

This study presents an improved synthetic route to incorporate a GalNAc-derived monomer into polymers targeting hepatocytes, showing good performance in terms of toxicity, uptake, and transfection efficiency against liver cells.
The ability to design liver-targeted polymers for nucleic acid delivery vehicles is plagued with difficulties ranging from polymer-mediated cellular toxicity to challenges in synthesizing monomers that enable facile cell-specific polymeric gene delivery vehicles. Herein is presented an improved synthetic route to a N-acetyl-d-galactosamine (GalNAc)-derived monomer (two steps, 91% overall yield) and its incorporation into a library of nine diblock co-polymers with 2-aminoethylmethacrylamide (AEMA) and two end-group functionalized AEMA homopolymers. These polymers were complexed with plasmid DNA (pDNA) into polyplexes and evaluated for the toxicity, uptake and transfection efficiency against cultured hepatocytes (HepG2) at N/P ratios of 2.5, 5, and 10. All polyplexes showed a range of cell survivability between 60-90%, an improvement over JetPEI, a commercial transfection reagent, when dosed at standard concentrations. Although GalNAc block length does not play a significant role in cellular uptake of Cy-5 labeled pDNA, it has a heavy influence on the transfection efficiency of luciferase-encoded pDNA where longer GalNAc block lengths give rise to higher transfection efficiencies. Overall, this work demonstrates a greatly improved route to GalNAc monomer synthesis, which that can be incorporated into polymers that target hepatocytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available