4.5 Article

Establishment of a Simplified System to Evaluate Salinity Preference and Validation of Behavioral Salinity Selection in the Japanese Medaka, Oryzias latipes

Journal

FISHES
Volume 6, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/fishes6020018

Keywords

osmoregulation; euryhaline fish; taste receptors

Funding

  1. Inamori Foundation
  2. JSPS KAKENHI [19K15912]
  3. Grants-in-Aid for Scientific Research [19K15912] Funding Source: KAKEN

Ask authors/readers for more resources

Behavioral experiments using a simplified aquarium system revealed that top-level acclimated medakas preferred freshwater, while bottom-level acclimated medakas preferred seawater. This suggests that euryhaline medakas prefer the salinity environments they are acclimated to.
In fishes, it is necessary to select a salinity environment suitable for survival. However, little is known about the mechanisms regarding detection and selection of salinity environments in fish. This study involved the establishment of a simple aquarium system in which fish can swim between freshwater (FW) and seawater (SW) in a single tank. In this tank, the lower level contained SW, the upper level contained FW, and the FW and SW levels were clearly separated as different salinity areas. Behavioral experiments of salinity environment selection using this simplified system to evaluate salinity preference showed that FW-acclimated medakas preferred FW to SW. In contrast, SW-acclimated medakas preferred SW to FW. These results indicate that euryhaline medakas prefer the saline habitats to which they are acclimated, when able to select the salinity environment. We identified the taste receptor type-2 and polycystic kidney disease 2-like 1 genes as possibly related to high-salinity taste in medaka. The expression of these genes increased at certain time points after SW challenges. In this study, we established an aquarium system to facilitate a simple experiment for salinity preference. Our results suggest that the medaka is good model for research related to seawater environment selection in fish.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available