4.7 Article

Reduction and bacterial adsorption of dissolved mercuric ion by indigenous bacteria at the Oak Ridge Reservation site

Journal

CHEMOSPHERE
Volume 280, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2021.130629

Keywords

Adsorption; Mercury; Microbial community; Reduction

Funding

  1. Department of Energy Minority Serving Institution Partnership Program (MSIPP) [G-SOW-A-02188, 0000456319]

Ask authors/readers for more resources

This study investigated microbial mediated mercuric reduction and mercury adsorption onto bacterial surfaces in two mixed cultures of indigenous bacteria at the Oak Ridge Reservation site. The results showed that the mercuric reduction was energy-dependent, with a positive relationship between mercuric reduction and the energy provided by a unit amount of substrate. Additionally, there was competition between mercury adsorption and reduction, with different capacities observed in the two cultures.
Mercury exists in various forms in the environment and the indigenous bacteria mediated processes have the potential to be used for mercury remediation. In this study, two mixed cultures of indigenous bacteria at the Oak Ridge Reservation site (i.e., ORR soil culture and ORR sediment culture) were selected to study the microbial mediated mercuric reduction under an aerobic condition as well as mercury adsorption onto bacterial surfaces. PCR analysis was performed to provide insights into the microbial community. The mercuric volatilizing experiment demonstrated the mercuric reducing capacity for both ORR cultures, in which the Pseudomonas genus was the dominating Hg-0 producer. The investigation of the impact of the sole carbon source revealed the energy-dependent characteristics of the mercuric reduction in this study. Namely, the mercuric reduction was nearly not impacted by the type of carbon source but positively related to the energy that a unit amount of substrate could provide. The study also indicated that the mercury adsorption competed with the reduction. According to the fitting of the Langmuir isotherm, the ORR soil culture was found to have a higher mercury adsorption capacity (i.e., 67.5 mg Hg/g dry biomass) than the ORR sediment culture (i.e., 53.1 mg Hg/g dry biomass). The negative correlation between the reduced mercury mass and adsorbed mercury mass was identified for both ORR cultures. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available